Telegram Group & Telegram Channel
почему ИИ-революция случилась именно сейчас?

уже несколько лет подряд ИИ делает то, что раньше считалось невозможным, компании инвестируют миллиарды в обучение все больших нейросетей, а люди вокруг повсеместно становятся “экспертами” (и я сам часть этой проблемы 🙃). но после того как мир увидел chatGPT, порой кажется, что сознательные роботы / сингулярность / AGI / восстание машин (нужное подчеркнуть) уже на пороге. а это действительно нечто совсем иное, чего в раньше не происходило никогда. и даже тест Тьюринга, концептуально разделяющий людей и роботов весь ХХ век, дал трещину — роботы все лучше притворяются людьми, а людям все сложнее доказать, что они не роботы, решая усложняющиеся капчи.

но что случилось такого, чего не происходило раньше? и действительно ли это технологическая "революция", которую энтузиасты сравнивают с изобретениям электричества, или обыкновенное линейное развитие прогресса, которое мы видели и раньше?

1️⃣ Данные. C момента изобретения письменности мы накопили очень много знаний о мире, а затем аккуратно и положили их все в интернет. Одна википедия — вершина человеческой техногенной цивилизации, обеспечившая доступом к информации каждого, у кого есть хотя бы старенький смартфон (дайте ей денег за это). И хотя мы сами временами используем это сокровище не самыми рациональным способом (слишком много мемов), обучение нейросетей упростилось радикально — бесплатные данные доступны в огромных количествах.

для масштаба: самая большая открытая языковая модель LLAMA-3 во время обучения видела ~75 терабайт текста, которые помимо википедии включают в себя весь открытый интернет, мировую литературу, реддит, твиттер, ArXiv c научными статьями, Github репозитории, и все это на 30 языках.

2️⃣ Вычислительные мощности. Их измеряют количеством вычислений в секунду и всю историю человечества эта скорость растет. закон Мура говорит о том, что количество транзисторов на процессоре увеличивается вдвое каждые ~два года, а Рэй Курцвейл заметил, что это справедливо не только для процессоров, но и для вычислительных мощностей всего человечества в целом, которые увеличиваются с экспоненциальной скоростью последние 100 лет, начиная с электромеханических арифмометров и заканчивая GPU гигантскими кластерами (картинка)

3️⃣ Вычислительные архитектуры (нейросети, глубокое обучение, трансформеры, RL). Соединение вычислительных мощностей с данными не создавало чуда, пока ученые не изобрели способ переноса знаний из текстов в код, подобный обучению детей. Для этого потребовалась очень длинная цепочка изобретений начиная от первых нейронных сетей еще в 1958 (без достаточно мощных компьютеров, они долго пролежали без дела), до обратного распространения ошибки (backpropagation), обучения с подкреплением (reinforcement learning) и появления архитектуры нейросетей "трансформер", которая стала стандартом для больших языковых моделей и до сих пор повсеместно используется в большинстве LLM, которые мы используем. и именно Трансформеры ответственны за T в аббревиатуре GPT (хотя ее изобретатели "просто" пытались улучшить google translate, но это отдельная история). а про обучение нейросетей у меня был отдельный пост.

4️⃣ Деньги. Все элементы выше какое-то время сосуществовали вместе, пока в ~2020 году небольшой, но амбициозный стартап openAI не вложил ~100 млн $ в рискованное мероприятие — обучение самой большой на тот момент языковой модели GPT-3 на 175 млрд параметров. гипотеза о связи размера сети и длительности обучения с конечной "интеллектуальностью" модели, еще не была подтверждена экспериментально, а поскольку проверка стоила колоссальных ресурсов, никто не спешил делать это первым.

рискованная ставка openAI выстрелила и надолго сделала их лидерами области. а подтверждение закона масштаба запустило гонку бюджетов. то что нам сейчас кажется примитивной технологией древних людей (помните GPT-3?), показало всему биг-теху, что сжигать деньги на GPU — самое благородное дело 2020-х, и конца тому не видно

🟦 Итого: ИИ революция = большие данные Х вычислительные мощности Х глубокое обучение X огромные деньги

#AI #history



tg-me.com/levels_of_abstraction/27
Create:
Last Update:

почему ИИ-революция случилась именно сейчас?

уже несколько лет подряд ИИ делает то, что раньше считалось невозможным, компании инвестируют миллиарды в обучение все больших нейросетей, а люди вокруг повсеместно становятся “экспертами” (и я сам часть этой проблемы 🙃). но после того как мир увидел chatGPT, порой кажется, что сознательные роботы / сингулярность / AGI / восстание машин (нужное подчеркнуть) уже на пороге. а это действительно нечто совсем иное, чего в раньше не происходило никогда. и даже тест Тьюринга, концептуально разделяющий людей и роботов весь ХХ век, дал трещину — роботы все лучше притворяются людьми, а людям все сложнее доказать, что они не роботы, решая усложняющиеся капчи.

но что случилось такого, чего не происходило раньше? и действительно ли это технологическая "революция", которую энтузиасты сравнивают с изобретениям электричества, или обыкновенное линейное развитие прогресса, которое мы видели и раньше?

1️⃣ Данные. C момента изобретения письменности мы накопили очень много знаний о мире, а затем аккуратно и положили их все в интернет. Одна википедия — вершина человеческой техногенной цивилизации, обеспечившая доступом к информации каждого, у кого есть хотя бы старенький смартфон (дайте ей денег за это). И хотя мы сами временами используем это сокровище не самыми рациональным способом (слишком много мемов), обучение нейросетей упростилось радикально — бесплатные данные доступны в огромных количествах.

для масштаба: самая большая открытая языковая модель LLAMA-3 во время обучения видела ~75 терабайт текста, которые помимо википедии включают в себя весь открытый интернет, мировую литературу, реддит, твиттер, ArXiv c научными статьями, Github репозитории, и все это на 30 языках.

2️⃣ Вычислительные мощности. Их измеряют количеством вычислений в секунду и всю историю человечества эта скорость растет. закон Мура говорит о том, что количество транзисторов на процессоре увеличивается вдвое каждые ~два года, а Рэй Курцвейл заметил, что это справедливо не только для процессоров, но и для вычислительных мощностей всего человечества в целом, которые увеличиваются с экспоненциальной скоростью последние 100 лет, начиная с электромеханических арифмометров и заканчивая GPU гигантскими кластерами (картинка)

3️⃣ Вычислительные архитектуры (нейросети, глубокое обучение, трансформеры, RL). Соединение вычислительных мощностей с данными не создавало чуда, пока ученые не изобрели способ переноса знаний из текстов в код, подобный обучению детей. Для этого потребовалась очень длинная цепочка изобретений начиная от первых нейронных сетей еще в 1958 (без достаточно мощных компьютеров, они долго пролежали без дела), до обратного распространения ошибки (backpropagation), обучения с подкреплением (reinforcement learning) и появления архитектуры нейросетей "трансформер", которая стала стандартом для больших языковых моделей и до сих пор повсеместно используется в большинстве LLM, которые мы используем. и именно Трансформеры ответственны за T в аббревиатуре GPT (хотя ее изобретатели "просто" пытались улучшить google translate, но это отдельная история). а про обучение нейросетей у меня был отдельный пост.

4️⃣ Деньги. Все элементы выше какое-то время сосуществовали вместе, пока в ~2020 году небольшой, но амбициозный стартап openAI не вложил ~100 млн $ в рискованное мероприятие — обучение самой большой на тот момент языковой модели GPT-3 на 175 млрд параметров. гипотеза о связи размера сети и длительности обучения с конечной "интеллектуальностью" модели, еще не была подтверждена экспериментально, а поскольку проверка стоила колоссальных ресурсов, никто не спешил делать это первым.

рискованная ставка openAI выстрелила и надолго сделала их лидерами области. а подтверждение закона масштаба запустило гонку бюджетов. то что нам сейчас кажется примитивной технологией древних людей (помните GPT-3?), показало всему биг-теху, что сжигать деньги на GPU — самое благородное дело 2020-х, и конца тому не видно

🟦 Итого: ИИ революция = большие данные Х вычислительные мощности Х глубокое обучение X огромные деньги

#AI #history

BY уровни абстракции




Share with your friend now:
tg-me.com/levels_of_abstraction/27

View MORE
Open in Telegram


LEVELS_OF_ABSTRACTION Telegram Group Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

LEVELS_OF_ABSTRACTION Telegram Group from sg


Telegram уровни абстракции
FROM USA